Ge -CLOSED SETS IN TOPOLOGICAL SPACES

A.Selvakumar

Department of Mathematics SNS College of Engineering Coimbatore, Tamilnadu, India

Abstract

In this paper, we introduce the notion of eg spaces and investigate some of their properties. -closed sets in topological

Keywords: EG -closed set and † gs-closed set. AMS(2000) Subject classification: 54A05,54D10,54F65,54G05.

Introduction and Preliminaries

Levine [6,7] introduced the concept of generalized closed sets and semi-closed sets in topological spaces. Maki et al. introduced generalized α -closed sets (briefly ga-closed sets) [9] and α -generalized closed sets (briefly α -closed sets) [8]. The concept of g-closed sets [16,17], *g-closed sets [14] and α -generalized sets [15] are introduced by M.K.R.S. Veera Kumar. In this paper, we introduce a new class of sets, namely, ga-closed sets and present some of its properties.

Throughout this paper (X, τ) , (Y, σ) and (Z, η) represent topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X, τ) , cl(A) and int(A) denote the closure of A and the interior of A respectively. P (X) denotes the power set of X. We recall the following definitions, which are useful in the sequel.

Definition 1.1. A subset A of a space (X, τ) is called

- 1. a pre-open set [10] if $A \subseteq int(cl(A))$ and a pre-closed set if $cl(int(A)) \subseteq A$,
- 2. a semi-open set [7] if $A \subseteq cl(int(A))$ and a semi-closed set [7] if $int(cl(A)) \subseteq A$,
- 3. an α -open set [11] if $A \subseteq \text{int}(\text{cl}(\text{int}(A)))$ and an α -closed set [11] if $\text{cl}(\text{int}(\text{cl}(A))) \subseteq A$,
- 4. a semi-preopen set [1] if $A \subseteq cl(int(cl(A)))$ and a semi-preclosed set [1] if
- 1. $int(cl(int(A))) \subseteq A$ and
- 5. a regular open set if A = int(cl(A)) and a regular closed set if cl(int(A)) = A. The pre-closure (resp. semi-closure, α -closure, semi-preclosure) of a subset A of a space (X, τ) is the intersection of all pre-closed (resp. semi-closed, α -closed, semi-preclosed) sets that contain A and is denoted by pcl(A) (resp. scl(A), acl(A), spcl(A)).

Definition 1.2. A subset A of a space (X, τ) is called a

- 1. a generalized closed (briefly g-closed) set [6] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) ; the complement of a g-closed set is called a g-open set,
- 2. a semi-generalized closed (briefly sg-closed) set [3] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ) ,

- 3. a generalized semi-closed (briefly gs-closed) set [2] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) ,
- 4. an α -generalized closed (briefly αg -closed) set [8] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) ,
- 5. a generalized α -closed (briefly $g\alpha$ -closed) set [9] if α cl(A) \subseteq U whenever
- 6. $A \subseteq U$ and U is α -open in (X, τ) , a $g\alpha^*$ -closed set [9] if $\alpha cl(A) \subseteq int(U)$ whenever $A \subseteq U$ and U is α -open in (X, τ) ,
- 6. a generalized semi-preclosed (briefly gsp-closed) set [4] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) ,
- 7. a generalized preregular-closed (briefly gpr-closed) set [5] if $pcl(A) \subseteq U$ Whenever $A \subseteq U$ and U is regular open in (X, τ) ,
- 8. a g^* -closed set [13] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X, τ) ,
- 9. a g-closed set [16,17] if $cl(A) \subseteq U$ Whenever $A \subseteq U$ and U is semi-open in g-closed set is called a b g-open set,
- 10. a *g-closed set [14] if $cl(A) \subseteq U$ Whenever $A \subseteq U$ and U is g-open in (X, τ) ; the complement of a *g-closed set is called a *g-open set,
- 7. a J gs-closed set [15] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is * g-open in (X, τ) ; the complement of a J gs-closed set is called a J gs-open set and a gs-closed set [12] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is J gs-open in (X, τ) .

Notation 1.3 For a Topological Space (X, τ) , $C(X, \tau)$ (resp. $\alpha C(X, \tau)$, $GC(X, \tau)$,

SGC (X, τ), GSC (X, τ), aGC (X, τ), GaC (X, τ), Ga*C (X, τ), GSP C (X, τ), GP RC (X, τ), G*C (X, τ), *GC (X, τ), GSC (X, τ), GeSC (X, τ)) denotes the class of all closed (resp. a-closed, g-closed, sg-closed, gs-closed, ga-closed, ga*-closed, gsp-closed, gpr-closed, g*-closed, *g-closed, *g-close

2. ga-closed sets ^e
We introduce the following definition.

Definition 2.1 A subset A of (X, τ) is called a ga-closed set if acl(A) $U^{\subseteq}e$ whenever $A \subseteq U$ and U is $^{]}gs$ -open in (X, τ) .

Theorem 2.2. Every α -closed set is a $g\alpha$ -closed set and thus every closed set is e^{θ} $g\alpha$ -closed.

Proof. Let A be an α -closed set in (X, τ) , then $A = \alpha cl(A)$. Let $A \subseteq U$, U is $\frac{1}{2}$ gs-open in (X, τ) . Since A is α -closed, $A = \alpha cl(A) \subseteq U$. This shows that A is α -closed set. The second part of the theorem It follows from the fact that every α closed set is α -closed. The converses in the above theorem are not true as can be seen by the follow- ing example.

Example 2.3. Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a, b\}\}$. Here $\alpha C(X, \tau) \in \{X\}$ example 2.3. Let $X = \{a, b, c\}$ and let $A = \{b, c\}$. Then A is not an α -closed and thus it is not closed. However A is a e

Thus the class of ga-closed the sets sets properly contains $^{\text{e}}$ and closed sets. classes of a-closed

Theorem 2.4.

- (a) Every gα-closed set is a gs-closed set and thus gsp-closed and gpr-closed. e
- (b) Every ga-closed set is a ga-closed set and thus ag-closed.^e
- (c) Every $g\alpha$ -closed set is a sg-closed set and thus semi-preclosed.^e

Proof. It follows from the definitions.

The following examples show that these implications are not reversible.

Example 2.5. Let $X = \{a, b, c\}$ and $\tau =$

$$\{X,\,\phi,\,\{a\},\,\{b,\,c\}\}. \ \ Here \ GSC\,\,(X,\,\tau\,\,) = P\,\,(X\,\,),\,GSP\,\,C\,\,(X,\,\tau\,\,) = P\,\,(X\,\,),\,GP\,\,RC\,\,(X,\,\tau\,\,) = P\,\,(X\,\,) \ and \ G^e\alpha C\,\,(X,\,\tau\,\,) = P\,\,(X\,\,)$$

 $\{X, \varphi, \{a\}, \{b, c\}\}\$ and let $A = \{b\}$. Then A is gs-closed, gsp-closed and gpr-closed. However A is not a ga-closed set.^e

Example 2.6. Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{b\}, \{b, c\}\}$. Here $G\alpha C(X, \tau) = \{x, y, \{b\}, \{b\}, \{b\}\}$.

 $\{X,\,\phi,\,\{a\},\,\{c\},\,\{a,\,b\},\,\{a,\,c\}\},\,\alpha GC\,\left(X,\,\tau\,\right)=$

 $\{X, \varphi, \{a\}, \{c\}, \{a, b\}, \{a, c\}\} \text{ and } G^e \alpha C (X, \tau) =$

 $\{X, \varphi, \{a\}, \{c\}, \{a, c\}\}\$ and let $A = \{a, b\}$.

Then A is ga-closed and ag-closed. However A is not a ga-closed set.^e

Example 2.7. Let $X = \{a, b, c\}$ and $\tau = \{X, \varphi, \{a\}, \{b\}, \{a, b\}\}$. Here SGC $(X, \tau) =$

 $\{X, \varphi, \{a\}, \{b\}, \{c\}, \{b, c\}, \{a, c\}\}, SP C (X, \tau) =$

 $\{X, \varphi, \{a\}, \{b\}, \{c\}, \{b, c\}, \{a, c\}\} \text{ and } G^e \alpha C(X, \tau) =$

 ${X, \varphi, \{c\}, \{b, c\}, \{a, c\}}$ and let $A = {a}$.

Then A is sg-closed and semi-preclosed. However A is not a gα-closed set.^e

Theorem 2.8. Every e Proof. It follows from the definitions.

1St National Conference on

Teaching Innovations and Enhancing Learning (Arts, Science And Technology)

gs-closed set. The converse of the above theorem need not be true by the following example.

Example 2.9. Let
$$X = \{a, b, c\}$$
 and $\tau = \{X, \varphi, \{a\}\}$. Here $Gesc(X, \tau) = \{x, \varphi, \{a\}\}$.

 $\{X, \varphi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}\},\$

 $G^{e}\alpha C(X, \tau) = \{X, \varphi, \{b\}, \{c\}, \{b, c\}\} \text{ and let }$

ga-closed set.

gs-closed but not a e

Theorem 2.10.

- (a) gα-closedness is independent of g-closedness, g*-closedness and *g-closedness.^e
- (b) e g-closedness.
- (c) ga-closedness is independent of ga^* -closedness.

Proof. It follows from the following examples.

Example 2.11. Let
$$X = \{a, b, c\}$$
 and $\tau = \{X, \phi, \{a\}, \{a, c\}\}$. Here GC $(X, \tau) =$

$$\{X, \varphi, \{b\}, \{a, b\}, \{b, c\}\}\$$
 and $G^e \alpha C(X, \tau) = \{X, \varphi, \{b\}, \{c\}, \{b, c\}\}\}$. Then $\{a, b\}$ is $g\alpha$ -closed set and also $\{c\}$ is $g\alpha$ -closed,

but not even a g-closed, g*-closed and *g-closed.

Example 2.12. Let
$$X = \{a, b, c\}$$
 and $\tau = \{X, \phi, \{a\}, \{a, c\}\}$. Here $G^bC(X, \tau) = \{X, \phi, \{b\}, \{b, c\}\}$ and

$$G^{e}\alpha C(X, \tau) = \{X, \varphi, \{b\}, \{c\}, \{b, c\}\}.$$
 Then $\{c\}$ is e

closed, but not a g-closed set. b

Let
$$X = \{a, b, c\}$$
 and $\tau = \{X, \phi, \{a\}, \{b, c\}\}$. Here $G^bC(X, \tau) = P(X)$ and

g-closed, but not a ga-closed set $^{\rm e}$

Example 2.13. Let
$$X = \{a, b, c\}$$
 and $\tau = \{X, \phi, \{a\}, \{b, c\}\}$. Here $G\alpha^*C(X, \tau) =$

P(X) and
$$G^e\alpha C(X, \tau) = \{X, \phi, \{a\}, \{b, c\}\}$$
. Then $\{b\}$ is $g\alpha^*$ -closed, but not a gaclosed set.

Let
$$X = \{a, b, c\}$$
 and $\tau = \{X, \phi, \{a\}\}$. Here $G\alpha^*C(X, \tau) = \{X, \phi, \{b, c\}\}$ and $G^e\alpha C(X, \tau) = \{x, \phi, \{b, c\}\}$

 $\{X, \phi, \{b\}, \{c\}, \{b, c\}\}.$ Then $\{b\}$ is ga-closed, but not a $g\alpha^*\text{-closed}$ set.

Theorem 2.14. Let A be a subset of (X, τ) .

(a) If A is $g\alpha$ -closed, then $\alpha cl(A)$ A does not contain any non-empty $\frac{1}{2}$ gs-close $\frac{e}{2}$ set.

Proof.

ISSN: 2321 - 788X

ga-closed and $A \subseteq B \subseteq acl(A)$, then B is ga-closed.

ga-closed and let F be a non-empty $\int_{gs-closed} set with(a)$ Suppose that A is F $\subseteq acl(A) - A$.

Then $A \subseteq X - F$ and so $acl(A) \subseteq X - F$. Hence $F \subseteq X - acl(A)$, a contradiction.

(b) Let U be a J gs-open set of (X, τ) such that $B \subseteq U$. Then $A \subseteq U$. Since A is $g\alpha$ -closed, $\alpha cl(A)$ $\subseteq U$. Now $acl(B) \subseteq acl(acl(A)) \subseteq U$. Therefore B is also a ga-closed set of (X, τ) .

Theorem 2.15. Let A and B be subsets of a topological space (X, τ) . Then the union of two e ga-closed set in (X, τ) . ga-closed sets. Let $A \cup B \subseteq U$, U is g gs-open. Since

Proof. Let A and B be e A and B are ga-closed sets, $acl(A) \subseteq U$, $acl(B) \subseteq U$. implies that $acl(A \cup B) = acl(A) \cup acl(B) \subseteq U$, (since $\tau^{\alpha} = \alpha$ -open set forms a topology [9]) and so $acl(A \cup B) \subseteq U$. Therefore $A \cup B$ is acclosed.e

We need the following notations:

For a subset E of a space (X, τ) , we define the following subsets of E.

 $E_{\mathsf{T}} = \{ x \in E / \{ x \} \in \mathsf{T} \};$

 $E_F = \{x \in E / \{x\} \text{ is closed in } (X, \tau)\};$

 $E_{\alpha \alpha \alpha} = \{x \in E/\{x\} \text{ is ga-open in } (X_{\alpha}\tau)\};$

E] $_{gsc} = \{x \in E/\{x\} \text{ is } ^{1}\text{gs-closed in } (X, \tau)\}.$

Lemma 2.16. For any space (X, τ) , $X = X]_{gsc} \cup X_{e_g \text{ o holds.}}$ Proof. Let $x \in X$. Suppose that $\{x\}$ is not $\int_{gs\text{-closed set in }(X, \tau)$. Then X is an unique $\int_{gs\text{-open set containing }} X - \{x\}$. Thus X- {x} is e -closed in (X, τ) and so { gα-open. Therefore x ∈ X] $gs_C ∪ X_e$ holds. x} is e gao

We need more notations:

For a subset A of (X, τ) , $ker(A) = \bigcap \{U/U \in \tau \text{ and } A \subseteq U\}$;

GSO-ker(A) = $\bigcap \{U/U \in \bigcup GSO(X, \tau) \text{ and } A \subseteq U \}$.

Theorem 2.17. For a subset A of (X, τ) , the following conditions are equivalent.

- (1) A is ga-closed in (X, τ) .
- (2) $acl(A) \subseteq {}^{1}GSO-ker(A)$ holds.
- (3) (i) $\operatorname{acl}(A) \cap X]_{gsc} \subseteq A$ and (ii) $\operatorname{acl}(A) \cap X]_{gso} \subseteq {}^{J}GSO\text{-ker}(A)$ holds.

Proof. (1) \Rightarrow (2) Let $x \in / \ ^1$ GSO-ker(A). Then there exists a set $U \in \ ^1$ GSO(X, τ) such that $x \in P$ U and $A \subseteq U$. Since A is $g\alpha$ -closed, $\alpha cl(A) \subseteq U$ and so $x \in A$ $\alpha cl(A)$.

This shows that $acl(A) \subseteq {}^{1}GSO-ker(A)$.

(2) \Rightarrow (1) Let $U \in {}^{]}GSO(X, \tau)$ such that $A \subseteq U$. Then we have that ${}^{]}GSO$ $\ker(A) \subseteq U$ and so by (2) $\operatorname{acl}(A) \subseteq U$. Therefore A is $\operatorname{ga-closed}$.

1St National Conference on

Teaching Innovations and Enhancing Learning (Arts, Science And Technology)

 $(2)\Rightarrow (3)$ (i) First we claim that ${}^{1}GSO\text{-ker}(A)\cap X{}_{gSC}\subseteq A$. Indeed, let $x\in {}^{1}GSO\text{-ker}(A)\cap X{}_{gSC}$ and assume that $x\in {}^{1}A$. Since the set $X=\{x\}\in {}^{1}GSO(X,\tau)$ and $A\subseteq X=\{x\}, {}^{1}GSO\text{-ker}(A)\subseteq X=\{x\}$. Then we have that $x\in X=\{x\}$ and so this is a contradiction. Thus we show that ${}^{1}GSO\text{-ker}(A)\cap X{}_{gSC}\subseteq A$. By using (2), $acl(A)\cap X{}_{gSC}\subseteq {}^{1}GSO\text{-ker}(A)\cap X{}_{gSC}\subseteq A$. (ii) It is obtained by (2). (3) \Rightarrow (2) By lemma 2.16 and (3), $acl(A)=acl(A)\cap X=acl(A)\cap (X]_{gSC}\cup (X_{e})_{gSC}$

 $\begin{array}{lll} \operatorname{acl}(A) &=& \operatorname{acl}(A) \cap X = \operatorname{acl}(A) \cap (X] \, \operatorname{gsc} \, \cup X_{e \quad o}) \, \operatorname{g} \\ &=& \left(\operatorname{acl}(A) \cap X\right] \, \operatorname{gsc}) \, \cup \left(\operatorname{acl}(A) \cap X_{e} \right) \\ &=& A \, \cup \, \left[\, \operatorname{GSO-ker}(A) \, \operatorname{g} \, \operatorname{o} \right]$

= ¹GSO-ker(A) holds.

Theorem 2.18. Let (X, τ) be a space and A and B are subsets.

- (i) If A is ${}^{J}gs$ -open and e g ${}^{-}closed$, then A is α -closed in (X, τ) .
- (ii) Suppose that (X, τ) is an α -space. A ga-closed set A is α -closed in $(X, \tau)^e$ if and only if $\alpha cl(A) A$ is α -closed in (X, τ) .
- (iii) For each $x \in X$, $\{x\}$ is $\int_{\mathbb{R}^3} gs$ -closed or $X \{x\}$ is e.g. -closed in (X, τ) .
- (iv) Every subset is ga-closed in (X, τ) if and only if J gs-open set is α -closed. e
- Proof. (ii) (Necessity) If A is α -closed, then $\alpha cl(A) A = \phi$. $\alpha cl(A) A$ is α -closed. It ga-closed and in follows from assumptions that $\tau = \tau^{\alpha}$. Then, $\alpha cl(A) A$ is ${}^{1}gs$ -closed (X, τ) and by Theorem 2.14., $\alpha cl(A) A = \phi$. Therefore A is α -closed in (X, τ).
- (iii) If $\{x\}$ is not $i^{l}g$ s-closed, then $X \{x\}$ is not $l^{l}g$ s-open. Therefore $X \{x\}$ $g\alpha$ -closed in (X, τ) . $e^{l}g$ (iv) (Necessity) Let U be a $l^{l}g$ s-open set. Then we have that $\alpha cl(U) \subseteq U$ and hence U is α -closed. (Sufficiency) Let A be a subset and U is a $l^{l}g$ s-open set such that $A \subseteq U$. Then $\alpha cl(A)$ $\alpha cl(U) = U$ and hence A is $g\alpha$ -closed. $e^{l}g$
- Remark 2.19. The following diagram shows the relationships established be-tween gα-closed sets and some other sets. A B represents A implies B but note conversely.

$$\alpha$$
 - closed gs - closed g α - closed & \uparrow % closed --> g α - closed --> gsp - closed . \downarrow & semi - preclosed sg - closed gpr - closed

References

- 1. D.Andrijevic, Semi-preopen sets, Mat. vesnik, 38(1)(1986), 24-32.
- 2. S.P.Arya and T.Nour, Characterizations of s-normal spaces, Indian J.Pure.Appl.math., 21(8)(1990), 717-719.
- 3. P. Bhattacharya and B.K.Lahiri, Semi-generalized closed sets in topology, Indian J. Math., 29(3)(1987) 375-382.
- 4. J.Dontchev, On generalizing semi-preopen sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 16(1995), 35-48.
- 5. Y. Gnanambal, On generalized preregular closed sets in topological spaces, Indian J. Pure Appl. Math., 28(3)(1997), 351-360.
- 6. N.Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(2)(1970), 89-96.
- 7. N.Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- H.Maki, R.Devi and K.Balachandran, Associated topologies of generalized α-closed sets and α-generalized closed sets, Mem. Fac. Sci. Kochi. Univ. Ser.A Math., 15(1994), 51-63.
- 9. H.Maki, R.Devi and K.Balachandran, Generalized α -closed sets in topol- ogy, Bull. Fukuoka Univ. Ed. Part III, 42(1993), 13-21.
- 10. A.S.Mashhour, M.E. Abd. El-Monsef and S.N.El-Deeb, On pre-continuous and weak pre-continuous mappings, Proc. Math. and Phys. Soc. Egypt, 53(1982), 47-53.
- 11. O.Njastad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- 12. P.Sundaram, N.Rajesh and Z.Dusynski, g-semi-closed sets in topological^e spaces (submitted)
- 13. M.K.R.S. Veera kumar, Between closed sets and g-closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 21(2000), 1-19.
- 14. M.K.R.S. Veera kumar, Between g^* -closed sets and g-closed sets, Antartica J. Math., 3(1)(2006), 43-65.
- 15. M.K.R.S. Veera kumar, ¹g-semi-closed sets in topological spaces, Antartica J. Math., 2:2(2005), 201-222.
- 16. M.K.R.S. Veera Kumar, g-locally closed sets and GLC -functions, Indian J. b Math., 43(2)(2001), 231-247.
- 17. M.K.R.S. Veera Kumar, On g-closed sets in topological spaces, Allahabad ^b Math. Soc., 18(2003), 99-112.